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Abstract. Diffusion of overdamped Brownian particles in sawtooth potentials subject to a spatially uniform
tilt is studied focusing on the influence of a small bias. It is shown that in the potentials with an asymmetry
in the direction of tilting force, the application of a weak external force leads to a suppression of diffusive
motion: the diffusion coefficient as a function of bias passes through a minimum which precedes an increase
of diffusion caused by delocalization of particles. In the weak noise limit the effect can be understood
as a competition between the forward and backward escape rates over potential barriers determining the
behaviour of the diffusion coefficient in a weak external field. The asymptotic lower border for the reduction
of spreading of particles at fixed temperature is established. The decrease of diffusion is accompanied by
more rapid increase of current.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.60.-k Trans-
port processes – 02.50.Ey Stochastic processes

Although the transport of Brownian particles in periodic
potentials has been a matter of research during a long
time [1], several interesting phenomena in this field were
discovered only recently [2,4]. First of all, one has to men-
tion the amplification of diffusion caused by an external
constant force [2,3] and the non-monotonic dependence of
the diffusion coefficient and coherence level of Brownian
transport on temperature [3,4]. Similar effects were also
established in environments with non-homogeneous dissi-
pation [5] and temperature [6]. In reference [5] a slight
decrease of the diffusion coefficient in a symmetric peri-
odic potential with space-dependent friction subjected to
a small bias was observed. This unexpected finding in-
dicates that the properties of weakly forced diffusion in
periodic structures are not completely understood.

For Brownian motion in a periodic potential loaded by
a weak stationary external field, a difference between the
forward (in the direction of bias) and backward escape
rates from the local minima appears. Such an asymmetry
manifests itself in a rise of directed macroscopic transport
(current) and has an effect on diffusion. In this letter we
show that the influence of a small tilting force on the dif-
fusive motion of the particles depends substantially on the
relative behaviour of the escape processes determined by
the shape of periodic potential. It proves, in particular,
that in the situations where the decrement of backward
transitions prevails over the increment of forward transi-
tions, diffusion is suppressed in a weak external field.
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Consequently, besides the well-known fact that the dif-
fusion coefficient is always smaller in unbiased periodic po-
tentials compared to the free thermal diffusion [7], there
exists a possibility to additionally reduce the spreading of
particles by applying a suitable static tilt to the potentials
with a certain asymmetry. This effect may be of interest
physically as well as for applications, providing an extra
factor in controlling the coherence of Brownian transport.
In what follows we study this effect in the case of Brow-
nian particles moving in one-dimensional piecewise linear
potentials. The results obtained for this simple model may
also be useful for understanding of similar phenomena in
systems of more complicated spatial structure.

Overdamped motion of a Brownian particle in a
tilted periodic potential V (x) = V0(x) − Fx, where
V0(x)=V0(x + L), and F ≥ 0 stands for the constant ex-
ternal force, is described by the Langevin equation

η
dx(t)

dt
= −dV (x)

dx
+ ξ(t). (1)

Here η is the viscous friction coefficient and ξ(t) is the zero
mean Gaussian white noise with the correlation function
〈ξ(t)ξ(t′)〉 = 2ηkBTδ(t − t′). For a simple sawtooth po-
tential with an amplitude A and asymmetry parameter k
(0 ≤ k ≤ L)1 we have V (x) = A(k − x)/α − Fx, where
α = k, if 0 ≤ x ≤ k, and α = k − L, if k ≤ x ≤ L. If
the tilting force exceeds the critical value Fc = A/(L−k),

1 The potential is symmetric if k = L/2 and, respectively,
positively (negatively) asymmetric if k > L/2 (k < L/2).
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the potential does not have local minima. The diffusion
coefficient and current are defined as

D = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
2t

, v = lim
t→∞

〈x(t)〉
t

. (2)

We choose L = 1 and replace the relevant quantities
with the corresponding dimensionless ones: T̃ = kBTA−1,
F̃ = F/Fc, F̃c = 1, D̃ = DηA−1, and ṽ = vηA−1. The
dimensionless potential is introduced by means of the re-
lation Ṽ /T̃ = V/kBT so that

Ṽ (x) = a0 − ax , 0≤ x≤ k ,

Ṽ (x) = −b0 + bx , k≤ x≤ 1 (3)

with the notations

a0 = 1 , a =
1 − (1 − F̃ )k

(1 − k)k
, b0 =

k

1 − k
, b =

1 − F̃

1 − k
.

(4)
Henceforth, the tilde signs above the symbols will be omit-
ted.

On the basis of the general analytical approach de-
veloped in references [3] the exact algebraic expressions
for the diffusion coefficient and current in the case of
tilted piecewise linear periodic potential were derived in
reference [8]. In the weak noise limit, if the conditions
(1 − F )/T � 1 and F < 1 are fulfilled, these expres-
sions simplify substantially (see [8]). In particular, we can
present the diffusion coefficient and current for this case
in terms of escape rates. An analysis of diffusion in a tilted
smooth symmetric potential in the terms of escape statis-
tics was carried out for various damping regimes in refer-
ence [9].

In the weak noise limit the transport of particles in
a periodic potential subject to a small bias is influenced
mainly by the heights of potential barriers. For the piece-
wise linear potential (3) the right-side and left-side barrier
heights read respectively as

∆V+ = V (1) − V (k) = 1 − F ,

∆V− = V (0) − V (k) = 1 +
k

1 − k
F . (5)

The quantities ∆V±2 determine the escape rates over the
corresponding barriers (∆V± � T )

w± =
(∆V+)2(∆V−)2

T
exp

(
−∆V±

T

)
. (6)

Equations (6) can be obtained using the standard scheme
for the derivation of the Kramers formula [10], except the
expansion into Taylor series near the extrema of V (x),
which is not applicable in the case of a piecewise linear
potential. However, in the present case this expansion is
not necessary as the relevant integrals can be explicitly
calculated. By means of escape rates (6) we can express

2 Note that the chosen scale of external force depends
through the critical tilt on the asymmetry parameter k.
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Fig. 1. The plot of the derivative ∂D/∂F |F=0 vs. the asym-
metry parameter for various values of temperature.

the diffusion coefficient and current in the following form
(see [11]):

D =
1
2
(w+ + w−) , (7)

v = w+ − w− . (8)

Therefore, D(F ) and v(F ) are completely determined by
the rates w± in the relevant approximation. At F = 0
we have D(0) = w, where w = T−1e−1/T is the escape
rate in the untilted potential. Let us reassure that the
expressions (7) and (8) are particular cases of the general
formula presented in references [3].

Proceeding from equations (7, 8) we analyze the be-
haviour of diffusion in a weak external field as well the
relationship between the properties of diffusion and cur-
rent in this regime.

The response of diffusion to the application of an in-
finitesimally weak tilting force is characterized by the
slope of the function D(F ) in the limit F → 0, that is
by the derivative ∂D/∂F at F = 0. The dependence of
this quantity on the asymmetry of the periodic potential
is shown in Figure 1. As one can see, the slope of D(F )|F=0

changes its sign regardless of the temperature if the asym-
metry parameter passes the value k = 0.5, being positive
for k < 0.5 and negative for k > 0.5. Consequently, if a
tiny load is applied, diffusion is reduced in the potentials
with positive asymmetry. With the further increase of the
tilting force the diffusion coefficient D(F ) passes through a
minimum (see Figs. 2 and 3) followed by its rise caused by
delocalization processes. In the case of the potentials with
k ≤ 0.5 the diffusion coefficient increases monotonically if
an external field is turned on (see curves 3 and 4 in Fig. 2).
The curves depicted in Figures 2 and 3 demonstrate that
the suppression of diffusion is favoured by larger values of
k and by lower temperatures. The reduction of spreading
is maximal in the limit k → 1. Let us also mention that
the situation is symmetric with respect to the following
transition: F → −F and k → 1 − k.

Equation (7) also enables us to provide a simple in-
terpretation of the discussed suppression of diffusion. The
barrier heights ∆V± vs. F vary at different rates in the
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Fig. 2. The plot of the diffusion coefficient vs. the tilting force
at fixed temperature for various values of asymmetry parame-
ter.
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Fig. 3. The plot of the diffusion coefficient vs.the tilting force
at fixed asymmetry parameter for various values of tempera-
ture.

potentials where k �= 0.53, resulting in the asymmetric
behaviour of the escape rates w± in an arbitrary weak ex-
ternal field, as illustrated in Figure 4. By that, as one can
observe in Figure 4, for a potential with positive asymme-
try the escape rate w− over the left-side barrier diminishes
more rapidly compared with the rise of the escape rate w+

over the right-side barrier if a very small tilting force is
applied, which leads to the suppression of spreading. Fur-
ther the decrease of w− slows down while the increase of
w+ picks up speed, i.e. the delocalization processes in the
direction of bias become dominating, and the diffusion co-
efficient passes through a minimum. On the other hand,
diffusion is promoted by a weak external field in a po-
tential with negative asymmetry whereas the increasing
contribution from w+ prevails anyway over the decrease
of w− in this case.

3 It follows from equation (5) that in the potentials with
k > 0.5 the increment of the left-side barrier height overcomes
the decrement of the right-side barrier height as the tilting
force increases. The situation is opposite for the potentials with
k < 0.5.
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Fig. 4. The plot of the normalized escape rates w+/w
(curves 1) and w−/w (curves 2) vs. the tilting force at fixed
temperature for the periodic potentials of various asymmetry.

From equation (7) one can evaluate approximately the
tilting force Fmin, which corresponds to the minimum of
the diffusion coefficient:

Fmin = T (1 − k) ln Ξ(T, k), (9)

where

Ξ(T, k) =
kΦ(T, k)[1 − kΦ(T, k)] − 2T (1 − k)[2kΦ(T, k) − 1]
(1 − k){Φ(T, k)[1 − kΦ(T, k)] + 2T [2kΦ(T, k)− 1]}(10)

with the notation

Φ(T, k) = 1 − T (1 − k) ln
(

k − 2T (2k − 1)
1 − k + 2T (2k − 1)

)
. (11)

Substituting Fmin from equation (9) into equation (7), we
obtain for the minimal value of the diffusion coefficient
Dmin ≡ D(Fmin) the following expression:

Dmin =
D(0)

2Ξk(T, k)
[1 + Ξ(T, k)] (12)

×[1 + Tk ln Ξ(T, k)]2[1 − T (1 − k) ln Ξ(T, k)]2.

According to equation (12), Dmin decreases with the in-
crease of the asymmetry parameter k as depicted in Fig-
ure 5. In this figure one can also observe that the minimum
of the diffusion coefficient is deeper for smaller noise in-
tensities. From equation (12) follows the limit

lim
k→1

Dmin =
D(0)

2Ξ0(T )
[1 + Ξ0(T )][1 + T ln Ξ0(T )]2 (13)

with

Ξ0(T ) =
1 − 2T

2T
+ ln

√
1 − 2T

2T
. (14)

Equation (13) provides the asymptotic lower boarder for
the maximal suppression of diffusion in a weak external
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Fig. 5. The plot of the ratio Dmin/D(0) vs. the asymmetry
parameter for various values of temperature.

field at fixed temperature. If T → 0, diffusion becomes
impossible and the ratio Dmin/D(0) approaches the lowest
value 0.5 when k → 1 (see also Fig. 5). This limiting value
associates with the asymptotic behaviour of the escape
rates at F = Fmin: if k → 1 and T → 0 then w+/w → 1
and w−/w → 0.

Although one can suppress the spreading by means of
an external field, the current vs. the tilting force is always
increasing due to the different roles of the backward escape
processes in the diffusive and directed motion of particles.
Furthermore, the acceleration of the current caused by a
weak external force is larger just in the potentials where
diffusion is reduced by a small bias (see Fig. 6). Such a
behaviour becomes comprehensible from the expression of
current, equation (8), according to which the rapid fall of
the escape rate w− in a very weak external field applied to
a potential with positive asymmetry (see Fig. 4) acts as an
additional trigger in the rise of current as bias is turned
on. In Figure 6 one should also notice that the current
approaches zero with negative curvature if k > 0.5 and
with positive curvature if k < 0.5 consistently with the
relation4 [2]

D = T (1 − k)
∂v

∂F
, (15)

which becomes asymptotically exact in the limit F → 0.
Thus, according to equation (15), the dependence of cur-
rent on tilting force shown in Figure 6 reflects equivalently
with Figure 1 the peculiarities of the behaviour of diffu-
sion in the potentials with various asymmetry subject to
a weak external field.

The described interrelation between current and diffu-
sion manifests itself in the dependence of the level of coher-
ence of Brownian transport, characterized by the Péclet
number Pe = v/D [3,4,8], on tilting force. In the weak
noise limit we obtain on the basis of equations (7) and (8)
that Pe = 2(w+ − w−)/(w+ + w−). In the external field
the Péclet number (the level of coherence) increases and

4 The pre-exponential factor 1 − k in equation (15) appears
in connection with the definition of the dimensionless tilting
force used in the present letter.
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Fig. 6. The plot of the current vs. the tilting force at fixed
temperature for various values of asymmetry parameter.

approaches the value Pe = 2 if w−/w+ 	 1, which cor-
responds to the Poissonian hopping process. By that the
system reaches the Poissonian regime earlier in the case
of positive potential asymmetry due to the suppression
of diffusion and the more rapid enhancement of current in
the pre-Poissonian region. With the further increase of the
tilting force the unidirectional one-step hopping nature of
transport is preserved until the inequality ∆V+ � T holds
(see also [8]). However, if the latter condition is violated
by a sufficiently strong external field (i.e., the approxi-
mate equations (7) and (8) are not applicable anymore),
the Péclet number starts to increase, as it was found in
reference [8] on the basis of the general scheme of refer-
ences [3].

The broken spatial inversion symmetry of the periodic
system is one of the possible conditions for the appearance
of the Brownian motor effect [11–13]. We demonstrated
that the special case of this symmetry breaking leads to
the decrease of spreading and to the increase of current
of particles if a small stationary bias has been applied.
Thereby the suitable asymmetry of a periodic potential
favours the enhancement of the coherence of Brownian
motion in a weak external field. This result may have a
certain relationship with the conditions for the suppres-
sion of the fluctuations of current and for the increase of
rectification efficiency in Brownian motor transport stud-
ied recently in reference [14].

In conclusion, in asymmetric periodic potentials one
can observe a suppression of diffusion caused by a station-
ary tilt. A similar effect was reported by Dan and Jayan-
navar in reference [5] for Brownian particles moving in a
symmetric periodic potential with the spatially harmonic
friction shifted in phase with respect to the potential. This
difference of phases introduces obviously an asymmetry
into the resulting force which has spatially varying influ-
ence on a particle. Thus it seems that one can speak here
more generally about a special spatial anisotropy in the
dynamics of Brownian particles required for the reduction
of diffusion in a weak external field.
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